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A dual lattice vortex formulation of homogeneous turbulence is developed, within the Martin-Siggia-Rose
field theoretical approach. It consists of a generalization of the usual dipole version of the Navier-Stokes
equations, known to hold in the limit of vanishing external forcing. We investigate, as a straightforward
application of our formalism, the dynamics of closed vortex tubes, randomly stirred at large length scales by
Gaussian stochastic forces. We find that besides the usual self-induced propagation, the vortex tube evolution
may be effectively modeled through the introduction of an additional white-noise correlated velocity field
background. The resulting phenomenological picture is closely related to observations previously reported
from a wavelet decomposition analysis of turbulent flow configurations.
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I. INTRODUCTION tion with standard polymer statistical mechanics is drawn,

Considerable progress has been achieved in the past nifd Hatakeyama and Kampeg], whose focus relies on the
decades concerning the kinematics of turbulent cohererRfoperties of flow configurations related to multifractal dis-
structures, a fact intimately associated to the improving pertributions of vortex filamentsmodeled as Burgers vortices
formance of computer and experimental resoufdgsHow- Our initial aim in this paper is to establish, in Sec. Il, an
ever, the relevant dynamical properties of the evolution andlternative formulation of the turbulence problem, incorpo-
interaction of the energy-containing eddies—believed byating into the usual stochastic approgdY] the physical
many to comprise the key for a fundamental understandingnsight suggested from experimental and numerical investi-
of intermittency and other turbulence characteristics—areations, which, as commented on above, place vorticity co-
still essentially unknown. As a concrete illustration of the herent structures on a central stage. More specifically, we
present theoretical limitations, it is worth recalling the diffi- will implement, with the help of the Martin-Siggia-Rose
culties faced in the study of wall turbulence. Even though thgunctional formalism[18], an exact statistical lattice vortex
main flow patterns have been identified in that situationdescription of the flow's dynamicgl3-15, which contains,
[2,3], there is, for instance, no solid theoretical foundationas a special case, the known dipole form of the Navier-
for the logarithmic law of the wall. Stokes equations. Next, in Sec. Il having in mind modeling

An ideal arena for the investigation of the dynamical andmatters(and, thus, nonrigorous argumeyta/e use the lat-
kinematical issues is provided by homogeneous isotropic tuttice vortex formalism just developed to advance a phenom-
bulence. Direct numerical simulations have showed clearlynological scheme describing the evolution of vortex tubes
that at moderately high Reynolds numbers, the flow is domiforced at large scales by stochastic forces. In particular, we
nated by long-lived vortex tubes with small cross-sectionaklso consider the effective force-force correlation function
dimensions (defined around the Kolmogorov dissipation employed in the renormalization-group analysis of turbu-
length and sizes extending up to the integral sddleg]. It  lence[19-23, decaying in Fourier space &3> In Sec. IV,
is also known, as set on a firm ground by Faggeal. [9], we find that the stochastic perturbations due to the random
through wavelet decomposition methods, that most of thexternal forcing may be effectively interpreted as resulting
turbulent kinetic energy is carried by the vortex tubes, whichfrom the vortex tube advection by a white-noise correlated
are surrounded on their turn by a background incoherentelocity background flow. We determine the one-dimensional
flow. energy spectruri(k) ~ k? of the background flow, including

Several analytical studies have addressed over the yeaits dependence upon the energy transfer rate, and the integral
the picture of homogeneous turbulent flows in terms of vor-and viscous scales as well. It is interesting to note that a
tex tubes, either from the dynamical or kinematical view-“thermal-like” energy spectrum, superimposed to the Kol-
points (see Ref.[10] for a comprehensive reviewAmong  mogorov one, was indeed observed in the numerical wavelet
the former, growing attention has been devoted toanalysis of turbulent configurations performed in R6f. To
Lundgren’s model[11], based on the evolution of strained conclude, in Sec. V, we summarize and discuss our main
spiral vortices, which are transformed into tubelike structuresesults.
and are probably generated in real flows through shear layer
instabilities[8,12]. In contrast, in the kinematical approach,
the dynamical details are bypassed, and an effective account
of the statistical stationary regime of the “vortex tube gas” is As largely known, a systematic approach to the statistical
attempted, as in the works of Chorjih5], where a connec- description of homogeneous isotropic turbulence, which is

Il. DUAL LATTICE VORTEX FORMULATION
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concerned with _the flow’s. small-scale prope_-rties, is yielded Wy + VU dpw, — WRIRY 4= vPw, + 1%, (2.6)
by the stochastic generalization of the Navier-Stokes equa- ) S
tions [17], wheref ’=€,4,05f, and w,=€,4,95v, is the vorticity field.

We obtain, using Eq(2.2), the correlator

o+ Vgdgu, = Vv, —d,P+T,, R N . .
Ca T (FARDF 5K 1)) = DX - X't -1')

3,0,=0. (2.2 = €apo€pyydpdif fo (XD, (X' 1))
N ) i — _ 2 g _ 3 4!
Above, f,=f,(X,t) denotes a Gaussian random force, defined = (dadp = Sup®)F(X =X St~ t').
at some large length scale, with vanishing expectation (2.7

value and the two-point correlation function I . .
We state now, in field theoretical language, what is meant

(FZOF (X)) = SR (K=K PAE-t). (2.2 by the stochastic evolution problem. Defining(x) as the
vorticity field at a certain time instarty, we are interest-

It follows from Novikov’s theorem[23] that energy is in- ed in finding the probability density functionalz
jected at large scales with pumping rate(f,v,)=3F(0)/;  =Z[w,(X),t;| 0%(X),t,] for the observation of vorticitys,(X)
=3Dy/,. Furthermore, according to the standard Kolmog-at a latter time instart;. Within the path-integral version of
orov phenomenology24], it is conjectured that dissipation the Martin-Siggia-Rose formalisid 8], it follows, from Egs.
takes place around the microscopic scale given dy (2.6) and(2.7), that
~Dy M3, where viscous effects become relevant. The
Reynolds number, depending only on the extreme sdales _ ~ ;
and 7, is Ro~ (LI 7)¥3 Z—J\/’f Dw,Dw,expiS), (2.9

Let the spatial part of the force-force correlator be written . L
P P where AV is a normalization constarj26], to assure that

as waa()z)Z[wa(k)) !t1| 0)2()_0 !tO]zll and
. _,._Dgm - exp(ik - X) . t
F(x-x'))= 7 d*k (2 + mP)2 =D exp(- mix - x'), S=j dt fd3i@a(&twa+vﬁaﬂwa— Wpdgy o~ VP,
1,
2.3 ’
i 32A3C O (v o _ 3N\ (3!
with m=1/L. An important feature of expressio(®.3), +'fd XAX' @0, ) D g [X = X' (X 't)}‘ (2.9

which does not necessarily hold for other admissible choices _ _
of the force-force correlation function, is that its inverse hasAn effective model of turbulent dynamics would be naturally

a simple local form. Actually, we get, from E@.3), attained if the velocity and vorticity fields that appear in Eq.
(2.9 were expressed as a sum over the contributions pro-

duced exclusively by relevant flow profiles. The basic diffi-
culty here regards the selection and parametrization of such
configurations. A promising starting point is to establish a set
Notwithstanding the fact that the Fourier transformFgfx  of “building blocks” that could be used to represent the usu-
-X'|) is regarded in principle as a regularized version ofally observed coherent structures. We recall that vortex
Dirac’s & function in some appropriate functional spd28, sheets or tubes, in particular, can be exactly obtained in a

we will discuss, later on, dynamical effects related to theSimple way as linear combinations of elementary closed vor-
alternative definition ticity rings (or “vorticity plaguettesy, through a lattice vor-

tex construction[14,15 originally devised in the realm of
- - _ Do 301 -3 o, superfluid physic$13]. Just define a cubic lattice, with spac-
F(X-X']) = 2 | SKTexdik- (x=x)1 (2.5 ing parametee— 0 (i.e., much smaller than the Kolmogorov
dissipation lengthy), whose sites are written a§=e(p;X;
which has been a crucial ingredient in the renormalization+ p,X,+psX3), where thep;’s are integers. The vector position
group studies of turbulencl9-23. In Eq. (2.5), the inte- X, is taken to be the common vertex of three plaquettes ori-
gration in Fourier space is bound to the regionented according to the unit vectots as shown in Fig. 1. In
1/L<k<1/%. Observe that in this case, the mean energya self-evident notation, an arbitrary plaquette is completely
input rate per octave is fixed g In 2, and we have=(0) characterized by the vector doubfet (X, %,). Furthermore,
=DgIn(L/ 7). by definition, the plaquette’s boundasp is identified to a
Considering the bulk of experimental and numerical evi-line vortex(vortex tube with vanishing cross sectjomhich
dence that favors the picture of turbulence as a vortex tubearries vorticity fluxe,(X,,t). Of course, a square line vortex
gas, from now on our attention will be focused on the vor-is an ill-defined mathematical object, due to the divergence
ticity dynamics implied by the stochastic Navier-Stokesof the velocity field on its corneli7]. However, as a simple
equations. It is convenient, thus, to work with the stochastiadegularization procedure, we impose an ultraviolet cutoff
Helmholtz equation, straightforwardly derived from Eqgs.=1/e in the Fourier-transformed kernel of the operator that
(2.1 as maps vorticity into velocity. In rough terms, this is equiva-

F(x-x) =

1 _ 2 >3
87TD0m(a2 m)283(Xx-x"). (2.4
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t
S=f dt{2§ dxa[atqs(r&_zﬁﬁ':aﬂ-'_¢(rFaBUB
P Jagp

fo

(2.12

. .
=X )F X’ t)}

z . . . . .
C/ It is worth noting that the actio(®.12) is invariant under the
oy

local transformationv,— w,+d,x. In fact, it turns out that
X the transition probability for small time intervals, derived
from Eq. (2.8), with Eq.(2.12), is well approximated by the
FIG. 1. The three oriented plaquettes which have the commomxpectation value of a product of loop operators, computed
reference position,, and carry, on their boundaries, vorticity fluxes in a nonlocal, three-dimensional(1) gauge theory.
©q, Oy, and ;. Drawing upon the gauge field theory correspondence, we

define now the dual field strength,
lent to replacing the line vortex by a vortex tube with a cross

section of radius-e. It is important to remark that the lattice
vortex is in fact an “overcomplete” basis for the description balX1) = 3,5, 5, (X.1), (2.13
of general flow configurations. In other words, a given ve-
locity configuration can be expressed in several differenthich satisfiesd, ¢, =0 and, additionally,
(and equivalentways as a superposition of the elementary R
vorticity plaquettes. This representation freedom is inti- Fop= €apy Py
mately related to the existence of a gauge field structure hid-
den in the stochastic model, as will be discussed below. 1 A A
Considering the plaquette=(X,,X,), let x,(s) € /P be a 3FapFap= PaPar
point parametrized by the arclengtl=@=< 4¢ of the oriented
boundary path that starts at the reference pgjeind ends at

X,(s). The vorticity field associated with this plaquette is IXFapt = €apy o p by (219

We find, substituting the above relations in £g.12),

qbg(xp,t)é(nl)ﬁ(nz) x A9, (2.10
wheren; andn, are the coordinates along the normal and S=- f dt{%% aneaﬁv[at¢a(ip't)’9_2‘9ﬁ¢7
binormal directions on the line vortg¥he binormal vector is o P
Qeflned aS(U) carrying yort|C|ty flux ¢y(Xp, 1). The .central + PR ) Bpvy = V(%) 35b,]
idea underlying the lattice vortex representation is, then, to
substitute Eq(2.10) in the Martin-Siggia-Rose actiof?.9) f 3c4327 T (3 SN (e
and perform afterwards the sum over all the plaquettes. In- | EXEX GROF(K=X DX D . (2.19
troducingF .= d,w5—dgi,, We get, for a single plaquette,
the following relations: The solenoidal constraint for the dual field can be imposed in
the path integration(2.8) by means of an auxiliary scalar
fd3i&)a&twa:ﬁt¢g(ip,t)jg dx,@, field X, which is nothing but a Lagrange multiplier. More
ap

concretely, we take

: > -2
= ﬁt%(xpvt)jgwdxaa IpF ap: Z=N f D&,Dé,D\ expliS), (2.1

j dgi&)a(vﬂé’ﬁwa - wlgﬁﬂva) = d)o.()_()p,t)§ anFaﬁUﬁ! with
JpP

ty
S= f dt{ J APR(L o(K,1) + 3N) (X, 1)
t

0

f &, o, = ¢U(>zp,t)3€ap dx, P,

+i J d3>zd3>z’<7)a(>z,t)F(|>z—i'|)<}sa(>z’,t)}. (2.17)
=- ¢o(ipvt)é an&BFaB (211)
» In Eg. (2.17), the whole dependence on tlgefields is im-

Thus, the Martin-Siggia-Rose action becomes plicit in the nonlocal “source” term
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LX) =-2 jg AX, €0 ,[ 1o (X, 1) T2
P Jap

+ ho(Xp V(X' ,1) = vh,(Xp, 1) 351 6% (X = X).
(2.18

To proceed, we define the Fourier transformLgfX,t),
Lkt = f a3 exp(— ik - X)L ,(X,t)
=i23§ 0X) €8, EXP(— iK - %)
P Jap
X k2 at¢a(xplt) + I¢U(vat)le(X !t)

+ V¢(,(>zp,t)k5>. (2.19

Writing, for a given plaquettéP=(x;,X,), the boundary po-

sition vector asK’ =X, + &, With v,(X') =0 ,(Xp) +£,0,0 o(Xp),
we obtain

- . . [k
La(krt) = IE eXFX_ Ik ' zp)eaﬁ'y{g(r'y(k)<Eg&td)(r()_()p!t)
p
Fighy (Ko D 4R, 1) + ykﬁ%()zp,t))

+ 0y, ,,(lz) bo(Xp, )0 B(ip,t)} , (2.20

with

00y () = 55 de, exp- ik - ),
JIP
- _ R -
go’y,r](k) =- Ié dgyg‘)y eXF(_ ik - §) = Kgay(k) .
IP ui

(2.21)

In the limit e— 0, keepingk<<1/e, we have, asymptotically,
5K =i€e, 5.k, and, therefore,

Lu(kt) = €3 expl=iK - X{TT ([ p(Rp, D)
P

+ (5o, 1] + i (R D 8,0, (K DK,
- iaavﬁ()zplt) - kavﬂ()_()p!t)]}i (222)

where we used ﬁaﬁ(ﬁ):ﬁaﬁ—kakﬁlkz, the Fourier-

transformed projector on transverse modes. The continuum
limit of the above sum is defined through the substitutions

1
)Zp—> X, 2 — ? f d3x, bpg— €dg. (2.23
p

We find

PHYSICAL REVIEW E70, 056309(2004

Lok, t) = T (K[ pa(k,t) + vkZha(k,H)] + QK b),
(2.29

where

Bulkt) = j oK expl— K - R o5,

Q,kt) = f &% exp(— ik - Qv 4(Apebe = duhp).
(2.25

There is a simple connection betweex and the velocity
field v,. Taking the Fourier transform of the vorticity field,
we find

Dok ) = f d3% exp(— ik - X)w,(X)
-3 3{5 dx, expi— iK - %)y (o )
P Jop
= gpa(Kexp- ik - X,) da(Xp,t)
p

Zie,pks> eXp—iK - Kp),(Knt). (2.26)
p

Recalling Eq(2.23), we getw,=¢€,z,d5¢, in the continuum
limit. Since w,=¢€,5,4v,, Wwe immediately conclude that the
fieldsv, and ¢, differ only by a gradient, which means that
v,=Il,zdp The field ¢, can be interpreted as a “gauge”
velocity field in a model where no gauge fixing has been
implemented. The physical gauge-fixing prescription corre-
sponds simply to the imposition of the incompressibility con-
straint, d,4,=0. As a consequence, if E¢2.22 is taken
back to real space, we get

Lo(Xt) = 0o = 1370, + 0(dpe = dutpp).  (2.27)

We define at this point the additional scalar fiefet[d;
-vé?]"\, and imposep,=v,+d,{, So that

La + &a)\ = at(ba - Vﬁzd’a + Uﬂ(aﬁ(ﬁa - aad’ﬁ) . (228)

Since the action(2.17) is quadratic inqAba, it is possible to
evaluate the exact path integration over the dual fields. Using
Egs.(2.16), (2.17), and(2.28), the result is an effectiveand
exacy expression for the probability density functiorigl

z:/\/J D¢.DX expliS,), (2.29

where
. tl
S¢> = Al_‘.f dtf ds)zdg)z’[&t(ﬁa - V&Z(ﬁa + vﬁ(aﬁ¢a - ‘901¢B)]X
to

X F_l()_()_ i,)[&t(ba - V&Z(]sa + Uﬁ(aﬂ¢a - &a(ﬁﬁ)]x’ .
(2.30
The field theory given by Eq2.30 may be obtained di-
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rectly, along the Martin-Siggia-Rose formalism, from theishing viscosity, we are left, therefore, with the evaluation of
stochastic differential equation o, andv(dgd,—dadp). The latter quantity is just minus
the Lamb vector. In fact, using,=¢, , a straightfor-

Obat Vp(Opba= datbp) =vPbo+Ta (23D oy computation leads to B e8Py ’

For vanishing external forces, the above expression reduces _ _

to the usual dipole version of the Navier-Stokes equation 0p(OpPa ™ Jubp) = €apy gV 3.2

[15]. Substitutinge, by v,+d,¢ in Eq. (2.31), we get the To find d,¢,, let us imagine, as an auxiliary construction, that

original stochastic Navier-Stokes Eq.1), with pressure the line vortex is advected by a divergence-free fglX,t),

given byP=4,{-vi?{- 302 We have provided, thus, starting defined on all space, and which satisfies the boundary con-

from Eq.(2.12), a derivation of Eq(2.30) [and, equivalently, dition £,(X,t)=X,(s,t) onT'. We have, therj29],

Eq. (2.31], which emphasizes the gauge structure associated - -

to the dynamics of the fiele,(X,t). It is tempting to conjec- o=V X (§X w). (3.3

ture that some of the standard gauge field theory technique ; - -

like the 1/N expansion in non-Abelian extensions, instan-]?g;elév(;r_]?&;)hat o= €apyIpdy)]= €apyiptihy, We  get,

tons, loop calculus, etc., could find interesting applications in '

the turbulence domain, an idea formerly advanced by Migdal Ohpy = €45, X0, + I\, (3.9

[28].

Does Eq.(2.3) yield any advantage over the standard
Navier-Stokes formulation? Direct numerical simulations
based on Eq(2.31) would probably have the same compu- N d
tational cost than the ones which usually rely on the Navier- Yo (8t) = eaﬁywﬁ(s,t)d—sx,/(s,t), (3.9
Stokes equations, since both versions involve at least two
Fourier transformations per iteration cycle. In practice, thewherey,=X,~v,, we obtain
above description provides an alternative approach to large -
eddy simulationg14], or the analysis of phenomenological S6= Syt St Su (3.6
aspects of vortex tubedynamics, as put forward in the followwith
ing considerations.

where\ is an arbitrary field. We are ready to substitute Egs.
(3.2) and(3.4) into Eq.(2.30. Introducing

i ¢2 ty p(t) p(t)
sw='0 Mot as| " asyiisvrn
4 )y Jo 0

Ill. STOCHASTIC VORTEX TUBE EVOLUTION
: o . =X, (s.1),
We are now interested in investigating the evolution of a

closed vortex tubd’, with small linear cross-sectional di- i (1 p(t)
mensions(of the order of7) and subject to the action of S,,= ?J dtf d3>?f ds g N (X HF X - X(s") ]y (S',1),
large-scale Gaussian random forces. In a first approximation, fo 0
we regard the tube as a vorticity filament, parametrized by
the curvex,=x,(s,t), and carrying total vorticity fluxp. The
vorticity field is given by

—
[ - - - N N
S, = Zf dtJ d3xf a3 I N DFHX = XN ),
fo
(3.7

wherep(t) is the length of the vorticity filament. The inte-

where, similarly to the former plaquette’s definitioms,and ~ gration overn gives

n, indicate the normal and binormal coordinates along the

line vortex. Z:j\/'f Dy, expliS,), (3.8
The assumptions taken in E(.1) that the vorticity flux

is time-independent and that cross-section fluctuations mayhere

be neglected are imposed as phenomenological constraints. oy o(t) o(t)

Our results will be expected to hold to the extent that phe- S,= ﬁj dtJ dSJ ds zﬂi(s,t)HaBF‘l[i(s)

nomena such as vortex breakdown, vortex merging, etc. do 4 Jy, 0 0

not affect the vortex tube evolution. Such flow regimes have L

been well verified in the numerical and real experiments ~ XS] (s',0). 3.9

where vortices are mostly advected by the background flow\ote that whileS, is a functional Ofwci“ the projection of,,
during their mean lifetime, in agreement with the flux con- 4, dx,/ds (that is, the longitudinal component gf,) maps
servation Kelvin's theorem. This state of affairs gives in faclihe |ine vortex into itself. The singularities that eventually
the phyS|_caI basis that supports the somewhat popular Cho'%?ppear in the integrand of E(B.9) may be circumvented in
of modeling vortex tubes by means of Burgers vortices, ory physical way, replacing the original vortex filament by a

d
0, = ¢5(n1)&nz)d—sxa(s,t), (3.

similar configurations. _ _ _ vortex tube, through the substitutions
Ouir first task here is to apply the information provided by B B
Eq. (3.1) in the effective action(2.30). In the limit of van- P (1) — ¢, (s,H)h(ng,ny),
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Ya(s',) — (s, Hh(ng,ng),
ds— d®X, ds' — d3¢’,

FX(s) - X(s')] — FXX-X), (3.10

wherex=(ny,n,,s), X'=(n;,ny,s'), and

h(nl,nz):i2 exp(—iz(n%ni)). (3.11)
TN 7

We assume that the “smeared” curvature radius of the
vortex tube is much larger than the Kolmogorov dissipation
length(a hypothesis supported by observatioris practical
computations, this allows us to work with a straight vortex

tube, takings=z, n,=x, andn,=y (one can figure itoutasa  rig 2 The vortex tubd'(t) evolves, during the small time
circular vortex tube with infinite curvature radjusBelow, interval 8, to the new configuratio(t+8). The intermediate

we deal with two specific examples of external stochastigjashed tubd™ () corresponds to the transport provided by the
forcing, given by Eqs(2.3) and(2.5), which will be named  self-induced velocity field .

modelsA andB, respectively. A more concise expression for
Sy, compared to Eq3.9), follows in general, relying basi-
cally on the slender vortex tube profile.

gration limit p(t) renders the analytical evaluation afdif-
ficult. Nevertheless, the problem looks amenable of numeri-
cal investigation through the use of Langevin techniques
Analysis of model A [30].

Since we are discussing the time evolution of a vortex
tube, the relevant physical question one may ask is con-
cerned with the probability density functional of finding the
(Sup = (7_2%(7/3) tube in a certain geometrical configuration. In a first instance,

this seems to be an intricate problem, once any individual
X (P -m?)28(x-x'). (3.12  vortex tube “world line” to be considered in the path integra-
tion is accounted for by a large number of configurations of
¥, A simple solution of this degeneracy problem may be
obtained, however, by means of the “minimal mappin{ﬁ’,’
depicted in Fig. 2. The essential idea is to keep track of the
vortex tube evolution for a very small time interval We
decompose the time evolution in two steps. First, the tube
I'(t) is mapped intd * (t) through its self-induced velocity
field v,. Next, the stochastic perturbatiaf, takesI'* (t) to
the final configurationl’(t+48). The mapping sequence,
— X, — X, with

To evaluateS,, it is necessary to kernel,

IT,5F H(X-X') =
B ( ) 8'7TDOm

If this expression is substituted into E@.9), considering
Egs.(3.10 and(3.11), a number of terms is obtained, hier-
archically organized according to the powers of the dissipa
tion length— 0 defined in their coefficients. We will retain
in the expression fog, only the dominant term, correspond-
ing to the smallest power of;. Using rotation invariance
around thez axis, this prescription effectively amounts to
performing in Eq.(3.9) the replacement

F H%-X) = 2B (2 2Hx-%), (3.13

167Dym
X =X, + v,
where(d,)?= d;+d;. We obtain “
i¢2 ftl fp(t) N 5 ¥ =x + 5(// (3 16)
S,=———S———= dt d s,t) . 3.14 a Ta ar )
o= Terogmp ), O, dGOF. (@19

o Let y be the plane that containg and is normal td'* (t).
The full expansion in powers of can be worked outas well, then 40 js just the vector parallel tg that connects. to
being related to the derivative expansion in powergsofVe .o vort((yex tubd(t+6). We have *

get, in them— 0 limit,

i F fp@ | , U (S0 = (s + Si(s,D),1) + O(5)
= d d 1
S TomDgmpt ), U, Ve e = (s + sudal(s) + O, (3.47)
+entdt+ )yt (3.15

where = i,dx,/ds. The expansion(3.17) implies that
It is not necessary to write down the explicit values of they, —.=0(J), and sog, may be substituted by? in Eq.
¢'s, insofar as they will not have any relevant role in the (3.14). We find, thus, that the probability density functional
forthcoming arguments. Although E(R.14) is an apparently  for the transitionl(t;) — I'(ty) of the vortex tube configura-
elementary quadratic action, the time-dependent spatial int¢gion may be defined as
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ty p(t)
Zy=N J Dy, zZ=N f Dy exp{—c f dt f ds{(t,do)* + <¢2>2]},
ty, Jo
2 ty p(t) 3.23
xexp{— 16772+m776f dtf ds[ng(s,t)]z}. ( )
0 o 70 where c=c(m, 5,D,) takes, for modelsA and B, the same

(3.18  values as before.

Clearly, the original field degeneracy is removed, and there is

in EQ. (3.18 a one-to-one correspondence between the vor- IV. BACKGROUND VELOCITY FLUCTUATIONS

tex tube integration paths and the fielg¥(s, ). It is interesting to note that the probability density func-
tional (3.23 is completely equivalent to the one derived for
Analysis of modelB the problem of random advection of a vortex tube by a back-

The computational steps are exactly the same as the cmground velocity field. In this way, we can draw a correspon-
P P Y : . Bnce between the former effective description, based on the
performed in the former case. The only technical difference

! . ! . : analysis of the stochastic Navier-Stokes equations, and real-
is that the analog of Eq(3.19) is written now in Fourier istic properties of turbulent flows. Such a mapping, however,

space, is not unique: it turns out that there is an infinity of velocity-
o 1 velocity correlators that would work. Having this theoretical
I P (K) = =5 (8,53 = KKk . (3.19 limitation in mind, we may try, at best, to compare the form

27Dy of the predicted coupling constants appearing in BiR3),

with the ones found from experimental and numerical stud-
ies. The central problem, then, is to define a Gaussian sto-
chastic forcing which leads, in an accurate way, to known

The dominant contribution to E¢3.9), of order 1/;°, comes
from the substitution

o 1 features of the background flow. At this point we are guided
IL5F (k) — ﬂ2—5a,3k3i- (3.20 by numerical observation®], which indicate the existence
47 Do of a short-range correlated background flow.

If v,(X,t) is the velocity of the background flow, which is
assumed to be a random Gaussian fluctuating field with van-
ishing mean value, a particularly appealing correlator is de-

6 ¢z\,; ty p(t) fined as
zB:/\/f Dy’ exp) - Sf dtf deyl(st)]?¢.
Dow> Ji, Jo VoKV 1) = gL (X~ X ) R(t-t'). (4.1

(3.2 It follows that the one-dimensional background energy spec-

Aremarkable feature of mod@, as it may be easily inferred rum is given by
from Eq. (3.2)), is that there is no dependence of the prob-
ability density functionalZg upon the integral scale=1/m E(k) = ﬂ (4.2)
(as it occurs in modeh, for instance. 4’7th,7

In order to establish a connection between the above mod-
els and observed features of turbulent flows, a slight modifiand that the path-integral expressi@23 holds, with
cation of expression@.18 and(3.21) is necessary. In prin- 5
ciple, the Martin-Siggia-Rose framework implemented by c:ﬂ 4.3
Egs. (2.29 and (2.30 is expected to provide a bona fide 29 '
statistical modeling of vortex tube motion if an ultraviolet
cutoff appears dynamically at a frequerjey~1/t,, where It is straightforward to prove Eq4.2) from the Fourier
t,~ 77" is the eddy turnover time at the Kolmogorov length transform of the velocity-velocity correlato4.1). Let us dis-
scale. The simplest way to find improved versions of Eqscuss now, in more detail, how E@3.23 arises from Eq.
(3.18 and(3.21), thus, is to replace the Diragfactor in Eq.  (4.1), with the specific parameter definitigd.3).
(2.2) by a regularized expression like The probability density functional to have a certain back-
ground velocity fieldv,(X,t) in the region{), enclosed by a
vortex tube, for the time intervaj <t<t,;, may be written as

We get, similarly to Eq(3.18), the probability density func-
tional

1 i}
Sx(t—t') = o exp(—t Yt =t']), (3.22
n

P= <Hi,j 5(U_Ct‘()_()|1tj) - Ua()ziitj))>1 (44)
and relax the cutoff prescription for the fielg, in frequency
space. As a consequence, if all the steps leading to Eqgwhere (X;,t;)) denotes a discretized space-time position de-
(3.18 and(3.2)) are evaluated again, taking into account thefined in the set of world lines generated by the vortex tube
modifications due to Eq3.22), we will get, for both models evolution. Using the Fourier representation of thieinction,
A andB, the general result Eq. (4.4 becomes, in the continuum limit,
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t L wherek<<1/#. In any case, however, E¢4.9) should yield
P:Nf D&, exp(if dtJ dgi@%) an isotropic correlator, when written in terms of the coordi-
R nates(x,y,z) of a fixed Cartesian framework, after the aver-
! 1 age over all possible vortex tube orientations is taken.
X\ exp - 'f dtf dXEv4 | ) - (4.5 From Egs.(4.2) and(4.3), we can predict the form of the
R one-dimensional energy spectrum for modaland B (dis-

Resorting to the Gaussian random behavior of the backeegarding numerical prefactors
ground velocity field, we are able to compute the above ex-

pectation value. Using Eq4.1), we find Ea(k) ~ D;f:ﬂ 2,
ty 7
7?=NJ Dgaexp(ij dtJ d3>?§au_a> .
to Ql D07] 2
Eg(k) ~ —5—Kk°. (4.1
Pt

9 at| ar !

ex 2)y, Uy It is useful to compare Kolmogorov's spectruiy (k)

D2’3’k‘5’3 with the above expressions. We may /estlmate
U3, 413
x| dBRE (% 1) Sx(t = t)IT 3t 1. 4.6 relylng on Kolmogorov phenomenology, thagt~Dg
Ll £al D 3Rt~ )bl )} 48 and t,~Dg7?% At the dissipative wave numbek

~1/77, we define the Reynolds-number-dependent dlmen—
Sincev,=I1,4v5 We may integrate over the fielf), to get  sjonless ratio

Po -— dtf A1 (t,00, z EBlky) g
exn{ f o K (t,00a)? + (V) ]} Q= Ek, ~RY, (4.12

(4.7) whereE(k,) is the background spectrum for a given model.

If the vortex tube has a small circular cross section of aredl turns that for model, we geta=—1 while for modelB,
w7, We can repIaCdQ @3 by myzfp(tdsin Eq. (4.7). Fur- a:(_). More gen_erally, it is not difficult to _reallze that the
thermore, to find the transmon probability density functional family of Gaussian stochastic forces described by
Z for the vortex tube evolution between configuratidris) Fk) ~ (K2 + m?) .
andI'(t;), we (i) decompose the velocity field in transverse
and Iongltudlnal components to the vortex tube tangent vecwith =3 3 leads to Eq(4.12 with «a=3-28.
tor, viz.,v,=v, +v , (i) integrate over the longitudinal com- A numencal wavelet analysis by Farge al. [9] of the
ponentsUr and (|||) introduce the “minimal velocity field” direct numerical simulations carried out by Vincent and Me-
|n close analogy with the previous definition ¢ﬂ We  neguzzi[8] at moderately high Reynolds numbers reveals the
obtaln existence of a backgrourid one-dimensional energy spec-
7 (1 ) trum. The turbulent flow may be depicted as a vortex tube
Z=Nf Dv° expl — W_J dtJ dy(t,50%2+ (%2 ¢.  9as surrounded by incoherent fluctuations, the latter having
@ 29 Jy, Jo T “ their kinetic energy equiprobably distributed over the spatial
(4.9 Fourier modes. It has been suggested in R@f.that the
' dissipation at the bottom of the inertial range would be pre-
Therefore, identifyingvg to w‘;, we have just found Eq. ceded at larger scales by some coherent-to-incoherent energy
(3.23 again, withc given by Eq.(4.3). transfer from the vortex tubes to the background field. A
We remark that it is possible to define, without much ad-fraction of the vortex tubes would be disrupted in a conser-
ditional effort, an alternative form for the velocity-velocity vative way, so that the transformation of their mechanical
correlator which would lead to the expanded formulationenergy into heat would occur afterwards in the background
given by Eq.(3.15. We could take, for instance, flow. One may conjecture that the integral length scale is
- S , , , irrelevant in this sequence of small-scale events. In that case,
a(XugX' 1) = gllagf (X =Xy =y)Fz=Z)&R(t =), e Havea=0. as inqmodeB, which is actually the scenario
(4.9 indicated by the numerical results, whe@=0.1 for the
Taylor-scale Reynolds numbeR, =150 (equivalent toR,
=10°, according to Ref[8] and also using the phenomeno-
logical expressions of Lohg&1)).

(4.13

wherex, y, andz are local coordinates attached to the vortex
tube, and

1
f(x)~fdk explikx).
1+b72K% + by + - V. CONCLUSION

(4.10 We investigated in this work both formal and phenomeno-

The coefficientd; may be adjusted in order to recover the logical aspects of homogeneous isotropic turbulence, within
set of ¢’'s appearing in Eq(3.15. Of course, Eq(4.9) is  the stochastic modeling of vorticity dynamics. A rigorous
approximately isotropic in the inertial range wave numbersstatistical lattice vortex description of turbulent flows was
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established, yielding the basis for a subsequent phenomeno- There is strong numerical evidence that the vortex tube
logical discussion of the problem of the random evolution ofgas accounts on its own for Kolmogorov’s spectrum
vortex tubes, commonly observed in experiments and nuf9,16,32,33. Regarding the background flow, our analysis
merical simulations. Since the advection of vorticity coher-suggests that it has a twofold character, involving the com-
ent structures is ultimately caused by the background flowbination of the “eddy noise24] forcing, effectively mod-
according to Kelvin's theorem, we interpret the stochasticeled by Eq.(2.5), and of configurations which satisfy the
method as an effective tool for computing the evolution ofenergy equipartion principle. The picture that emerges—to
vortex tubes. We were able to find in this way a plausiblebe explored in further analytical and numerical works—is
form for the background velocity-velocity correlator, and, asthat these two facets of the background fluctuations are self-
an immediate consequence, the background one-dimensionadnsistently related to the vorticity coherent structures.
energy spectrum. We found a satisfactory agreement with thé/hile the force-force correlatgd.13 with 3>3/2 is a rea-
recent numerical analysis of Farget al. [9], where a sonable choice for a rigorous study of the turbulence prob-
thermal-like spectrum was clearly noticed for the back-lem, it becomes useless when considered in the simplified
ground flow. In particular, we observed that the Gaussiaphenomenological perspective addressed in Sec. IV. On the
correlator(2.5), used in the renormalization-group approachother hand, modeB is favored by the force of numerical

to turbulence[19-22—which has led to perhaps the best observations, since it copes well with the tripartite phenom-
theoretical computation of the Kolmogorov spectrum per-enological stage set up by the vortex tube gas, stochastic
formed so far—is likely the correct choig¢emodelB of Sec.  eddy noise, and the thermal-like background flow.

IV) for the derivation of phenomenologically meaningful re-
sults. It would be important to improve the connection be-
tween the stochastic modeling and the numerical results,
concerning anisotropic effects, as the reported zero helicity This work has been partially supported by CNPq and
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