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A dual lattice vortex formulation of homogeneous turbulence is developed, within the Martin-Siggia-Rose
field theoretical approach. It consists of a generalization of the usual dipole version of the Navier-Stokes
equations, known to hold in the limit of vanishing external forcing. We investigate, as a straightforward
application of our formalism, the dynamics of closed vortex tubes, randomly stirred at large length scales by
Gaussian stochastic forces. We find that besides the usual self-induced propagation, the vortex tube evolution
may be effectively modeled through the introduction of an additional white-noise correlated velocity field
background. The resulting phenomenological picture is closely related to observations previously reported
from a wavelet decomposition analysis of turbulent flow configurations.
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I. INTRODUCTION

Considerable progress has been achieved in the past two
decades concerning the kinematics of turbulent coherent
structures, a fact intimately associated to the improving per-
formance of computer and experimental resources[1]. How-
ever, the relevant dynamical properties of the evolution and
interaction of the energy-containing eddies—believed by
many to comprise the key for a fundamental understanding
of intermittency and other turbulence characteristics—are
still essentially unknown. As a concrete illustration of the
present theoretical limitations, it is worth recalling the diffi-
culties faced in the study of wall turbulence. Even though the
main flow patterns have been identified in that situation
[2,3], there is, for instance, no solid theoretical foundation
for the logarithmic law of the wall.

An ideal arena for the investigation of the dynamical and
kinematical issues is provided by homogeneous isotropic tur-
bulence. Direct numerical simulations have showed clearly
that at moderately high Reynolds numbers, the flow is domi-
nated by long-lived vortex tubes with small cross-sectional
dimensions (defined around the Kolmogorov dissipation
length) and sizes extending up to the integral scale[4–8]. It
is also known, as set on a firm ground by Fargeet al. [9],
through wavelet decomposition methods, that most of the
turbulent kinetic energy is carried by the vortex tubes, which
are surrounded on their turn by a background incoherent
flow.

Several analytical studies have addressed over the years
the picture of homogeneous turbulent flows in terms of vor-
tex tubes, either from the dynamical or kinematical view-
points (see Ref.[10] for a comprehensive review). Among
the former, growing attention has been devoted to
Lundgren’s model[11], based on the evolution of strained
spiral vortices, which are transformed into tubelike structures
and are probably generated in real flows through shear layer
instabilities[8,12]. In contrast, in the kinematical approach,
the dynamical details are bypassed, and an effective account
of the statistical stationary regime of the “vortex tube gas” is
attempted, as in the works of Chorin[15], where a connec-

tion with standard polymer statistical mechanics is drawn,
and Hatakeyama and Kambe[16], whose focus relies on the
properties of flow configurations related to multifractal dis-
tributions of vortex filaments(modeled as Burgers vortices).

Our initial aim in this paper is to establish, in Sec. II, an
alternative formulation of the turbulence problem, incorpo-
rating into the usual stochastic approach[17] the physical
insight suggested from experimental and numerical investi-
gations, which, as commented on above, place vorticity co-
herent structures on a central stage. More specifically, we
will implement, with the help of the Martin-Siggia-Rose
functional formalism[18], an exact statistical lattice vortex
description of the flow’s dynamics[13–15], which contains,
as a special case, the known dipole form of the Navier-
Stokes equations. Next, in Sec. III having in mind modeling
matters(and, thus, nonrigorous arguments), we use the lat-
tice vortex formalism just developed to advance a phenom-
enological scheme describing the evolution of vortex tubes
forced at large scales by stochastic forces. In particular, we
also consider the effective force-force correlation function
employed in the renormalization-group analysis of turbu-
lence[19–22], decaying in Fourier space ask−3. In Sec. IV,
we find that the stochastic perturbations due to the random
external forcing may be effectively interpreted as resulting
from the vortex tube advection by a white-noise correlated
velocity background flow. We determine the one-dimensional
energy spectrumEskd,k2 of the background flow, including
its dependence upon the energy transfer rate, and the integral
and viscous scales as well. It is interesting to note that a
“thermal-like” energy spectrum, superimposed to the Kol-
mogorov one, was indeed observed in the numerical wavelet
analysis of turbulent configurations performed in Ref.[9]. To
conclude, in Sec. V, we summarize and discuss our main
results.

II. DUAL LATTICE VORTEX FORMULATION

As largely known, a systematic approach to the statistical
description of homogeneous isotropic turbulence, which is
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concerned with the flow’s small-scale properties, is yielded
by the stochastic generalization of the Navier-Stokes equa-
tions [17],

]tva + vb]bva = n]2va − ]aP + fa,

]ava = 0. s2.1d

Above, fa= fasxW ,td denotes a Gaussian random force, defined
at some large length scaleL, with vanishing expectation
value and the two-point correlation function

kfasxW,tdfbsxW8,t8dl = dabFsuxW − xW8uddst − t8d. s2.2d

It follows from Novikov’s theorem[23] that energy is in-
jected at large scales with pumping rateE=kfaval=3Fs0d/2
;3D0/2. Furthermore, according to the standard Kolmog-
orov phenomenology[24], it is conjectured that dissipation
takes place around the microscopic scale given byh
,D0

−1/4n3/4, where viscous effects become relevant. The
Reynolds number, depending only on the extreme scalesL
andh, is Re,sL /hd4/3.

Let the spatial part of the force-force correlator be written
as

FsuxW − xW8ud =
D0m

p2 E d3kW
expsikW ·xWd
sk2 + m2d2 = D0 exps− muxW − xW8ud,

s2.3d

with m;1/L. An important feature of expression(2.3),
which does not necessarily hold for other admissible choices
of the force-force correlation function, is that its inverse has
a simple local form. Actually, we get, from Eq.(2.3),

F −1suxW − xW8ud =
1

8pD0m
s]2 − m2d2d3sxW − xW8d. s2.4d

Notwithstanding the fact that the Fourier transform ofFsuxW
−xW8ud is regarded in principle as a regularized version of
Dirac’s d function in some appropriate functional space[25],
we will discuss, later on, dynamical effects related to the
alternative definition

FsuxW − xW8ud =
D0

4p
E d3kWk−3 expfikW · sxW − xW8dg, s2.5d

which has been a crucial ingredient in the renormalization-
group studies of turbulence[19–22]. In Eq. (2.5), the inte-
gration in Fourier space is bound to the region
1/L,k,1/h. Observe that in this case, the mean energy
input rate per octave is fixed toD0 ln 2, and we haveFs0d
=D0 lnsL /hd.

Considering the bulk of experimental and numerical evi-
dence that favors the picture of turbulence as a vortex tube
gas, from now on our attention will be focused on the vor-
ticity dynamics implied by the stochastic Navier-Stokes
equations. It is convenient, thus, to work with the stochastic
Helmholtz equation, straightforwardly derived from Eqs.
(2.1) as

]tva + vb]bva − vb]bva = n]2va + f a
! , s2.6d

where f a
! =eabg]bfg and va=eabg]bvg is the vorticity field.

We obtain, using Eq.(2.2), the correlator

kf a
!sxW,tdf b

!sxW8,t8dl ; DabsuxW − xW8uddst − t8d

= earsebgh]r]g8kfssxW,tdfhsxW8,t8dl

= s]a]b − dab]2dFsuxW − xW8uddst − t8d.

s2.7d

We state now, in field theoretical language, what is meant
by the stochastic evolution problem. Definingva

0sxWd as the
vorticity field at a certain time instantt0, we are interest-
ed in finding the probability density functionalZ
=ZfvasxWd ,t1uva

0sxWd ,t0g for the observation of vorticityvasxWd
at a latter time instantt1. Within the path-integral version of
the Martin-Siggia-Rose formalism[18], it follows, from Eqs.
(2.6) and (2.7), that

Z = NE Dv̂aDva expsiSd, s2.8d

where N is a normalization constant[26], to assure that
eDvasxWdZfvasxWd ,t1uva

0sxWd ,t0g=1, and

S=E
t0

t1

dtHE d3xWv̂as]tva + vb]bva − vb]bva − n]2vad

+ i E d3xWd3xW8v̂asxW,tdDabsuxW − xW8udv̂bsxW8,tdJ . s2.9d

An effective model of turbulent dynamics would be naturally
attained if the velocity and vorticity fields that appear in Eq.
(2.9) were expressed as a sum over the contributions pro-
duced exclusively by relevant flow profiles. The basic diffi-
culty here regards the selection and parametrization of such
configurations. A promising starting point is to establish a set
of “building blocks” that could be used to represent the usu-
ally observed coherent structures. We recall that vortex
sheets or tubes, in particular, can be exactly obtained in a
simple way as linear combinations of elementary closed vor-
ticity rings (or “vorticity plaquettes”), through a lattice vor-
tex construction[14,15] originally devised in the realm of
superfluid physics[13]. Just define a cubic lattice, with spac-
ing parametere→0 (i.e., much smaller than the Kolmogorov
dissipation lengthh), whose sites are written asxWp=esp1x̂1

+p2x̂2+p3x̂3d, where thepi’s are integers. The vector position
xWp is taken to be the common vertex of three plaquettes ori-
ented according to the unit vectorsx̂s, as shown in Fig. 1. In
a self-evident notation, an arbitrary plaquette is completely
characterized by the vector doubletP=sxWp, x̂sd. Furthermore,
by definition, the plaquette’s boundary]P is identified to a
line vortex (vortex tube with vanishing cross section) which
carries vorticity fluxfssxWp,td. Of course, a square line vortex
is an ill-defined mathematical object, due to the divergence
of the velocity field on its corners[27]. However, as a simple
regularization procedure, we impose an ultraviolet cutoffL
;1/e in the Fourier-transformed kernel of the operator that
maps vorticity into velocity. In rough terms, this is equiva-
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lent to replacing the line vortex by a vortex tube with a cross
section of radius,e. It is important to remark that the lattice
vortex is in fact an “overcomplete” basis for the description
of general flow configurations. In other words, a given ve-
locity configuration can be expressed in several different
(and equivalent) ways as a superposition of the elementary
vorticity plaquettes. This representation freedom is inti-
mately related to the existence of a gauge field structure hid-
den in the stochastic model, as will be discussed below.

Considering the plaquetteP=sxWp, x̂sd, let xassdP]P be a
point parametrized by the arclength 0øsø4e of the oriented
boundary path that starts at the reference pointxWp and ends at
xassd. The vorticity field associated with this plaquette is

va = fssxWp,tddsn1ddsn2d
d

ds
xassd, s2.10d

wheren1 and n2 are the coordinates along the normal and
binormal directions on the line vortex(the binormal vector is
defined asx̂s) carrying vorticity flux fssxWp,td. The central
idea underlying the lattice vortex representation is, then, to
substitute Eq.(2.10) in the Martin-Siggia-Rose action(2.9)
and perform afterwards the sum over all the plaquettes. In-
troducingFab;]av̂b−]bv̂a, we get, for a single plaquette,
the following relations:

E d3xWv̂a]tva = ]tfssxWp,tdR
]P

dxav̂a

= − ]tfssxWp,tdR
]P

dxa]−2]bFab,

E d3xWv̂asvb]bva − vb]bvad = fssxWp,tdR
]P

dxaFabvb,

E d3xWv̂a]2va = fssxWp,tdR
]P

dxa]2v̂a

= − fssxWp,tdR
]P

dxa]bFab. s2.11d

Thus, the Martin-Siggia-Rose action becomes

S=E
t0

t1

dtHo
P
R

]P
dxaf]tfs]−2]bFab + fsFabvb

+ nfs]bFabg +
i

2
E d3xWd3xW8FabsxW,tdFsuxW

− xW8udFabsxW8,tdJ . s2.12d

It is worth noting that the action(2.12) is invariant under the
local transformationv̂a→ v̂a+]ax. In fact, it turns out that
the transition probability for small time intervals, derived
from Eq. (2.8), with Eq. (2.12), is well approximated by the
expectation value of a product of loop operators, computed
in a nonlocal, three-dimensional,Us1d gauge theory.

Drawing upon the gauge field theory correspondence, we
define now the dual field strength,

f̂asxW,td ; 1
2eabgFbgsxW,td, s2.13d

which satisfies]af̂a=0 and, additionally,

Fab = eabgf̂g,

1
2FabFab = f̂af̂a,

dxaFabvb = eabgdxavbf̂g. s2.14d

We find, substituting the above relations in Eq.(2.12),

S= −E
t0

t1

dtHo
P
R

]P
dxaeabgf]tfssxWp,td]−2]bf̂g

+ fssxWp,tdf̂bvg − nfssxWp,td]bf̂gg

+ i E d3xWd3xW8f̂asxW,tdFsuxW − xW8udf̂asxW8,tdJ . s2.15d

The solenoidal constraint for the dual field can be imposed in
the path integration(2.8) by means of an auxiliary scalar
field l, which is nothing but a Lagrange multiplier. More
concretely, we take

Z = NE Df̂aDfaDl expsiSd, s2.16d

with

S=E
t0

t1

dtHE d3xWsLasxW,td + ]aldf̂bsxW,td

+ i E d3xWd3xW8f̂asxW,tdFsuxW − xW8udf̂asxW8,tdJ . s2.17d

In Eq. (2.17), the whole dependence on thef fields is im-
plicit in the nonlocal “source” term

FIG. 1. The three oriented plaquettes which have the common
reference positionxWp, and carry, on their boundaries, vorticity fluxes
F1, F2, andF3.
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LasxW,td ; − o
P
R

]P
dxg8eabgf]tfssxWp,td]−2]b

+ fssxWp,tdvbsxW8,td − nfssxWp,td]bgd3sxW8 − xWd.

s2.18d

To proceed, we define the Fourier transform ofLasxW ,td,

L̃askW,td =E d3xW exps− ikW ·xWdLasxW,td

= io
P
R

]P
dxg8eabg exps− ikW ·xW8d

3 Skb

k2]tfssxWp,td + ifssxWp,tdvbsxW8,td

+ nfssxWp,tdkbD . s2.19d

Writing, for a given plaquetteP=sxWp, x̂sd, the boundary po-

sition vector asxW8=xWp+jW, with vasxW8d.vasxWpd+jh]hvasxWpd,
we obtain

L̃askW,td = io
p

exps− ikW ·xWpdeabgHgsgskWdSkb

k2]tfssxWp,td

+ ifssxWp,tdvbsxWp,td + nkbfssxWp,tdD
+ gsg,hskWdfssxWp,td]hvbsxWp,tdJ , s2.20d

with

gsgskWd ; R
]P

djg exps− ikW · jWd,

gsg,hskWd ; − iR
]P

djgjh exps− ikW · jWd =
]

]kh

gsgskWd.

s2.21d

In the limit e→0, keepingk!1/e, we have, asymptotically,

gabskWd= ie2eabgkg, and, therefore,

L̃askW,td = e2o
p

exps− ikW ·xWpdhP̃abskWdf]tfbsxWp,td

+ nk2fbsxWp,tdg + ifbsxWp,tdfdabvgsxWp,tdkg

− i]avbsxWp,td − kavbsxWp,tdgj, s2.22d

where we used P̃abskWd=dab−kakb /k2, the Fourier-
transformed projector on transverse modes. The continuum
limit of the above sum is defined through the substitutions

xWp → xW, o
p

→ 1

e3 E d3xW, fb → efb. s2.23d

We find

L̃askW,td = P̃abskWdf]tf̃bskW,td + nk2f̃bskW,tdg + VaskW,td,

s2.24d

where

f̃askW,td =E d3xW exps− ikW ·xWdfasxW,td,

VaskW,td =E d3xW exps− ikW ·xWdvbs]bfa − ]afbd.

s2.25d

There is a simple connection betweenfa and the velocity
field va. Taking the Fourier transform of the vorticity field,
we find

ṽaskW,td =E d3xW exps− ikW ·xWdvasxWd

= o
P
R

]P
dxa exps− ikW ·xWdfssxWp,td

= o
p

gbaskWdexps− ikW ·xWpdfbsxWp,td

= ie2eabgkbo
p

exps− ikW ·xWpdfgsxWp,td. s2.26d

Recalling Eq.(2.23), we getva=eabg]bfg in the continuum
limit. Sinceva=eabg]bvg, we immediately conclude that the
fields va andfa differ only by a gradient, which means that
va=Pabfb. The field fa can be interpreted as a “gauge”
velocity field in a model where no gauge fixing has been
implemented. The physical gauge-fixing prescription corre-
sponds simply to the imposition of the incompressibility con-
straint, ]afa=0. As a consequence, if Eq.(2.22) is taken
back to real space, we get

LasxW,td = ]tva − n]2va + vbs]bfa − ]afbd. s2.27d

We define at this point the additional scalar fieldz=f]t

−n]2g−1l, and imposefa=va+]az, so that

La + ]al = ]tfa − n]2fa + vbs]bfa − ]afbd. s2.28d

Since the action(2.17) is quadratic inf̂a, it is possible to
evaluate the exact path integration over the dual fields. Using
Eqs.(2.16), (2.17), and(2.28), the result is an effective(and
exact) expression for the probability density functionalZ,

Z = NE DfaDl expsiSfd, s2.29d

where

Sf =
i

4
E

t0

t1

dtE d3xWd3xW8f]tfa − n]2fa + vbs]bfa − ]afbdgx

3 F−1sxW − xW8df]tfa − n]2fa + vbs]bfa − ]afbdgx8.

s2.30d

The field theory given by Eq.(2.30) may be obtained di-
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rectly, along the Martin-Siggia-Rose formalism, from the
stochastic differential equation

]tfa + vbs]bfa − ]afbd = n]2fa + fa. s2.31d

For vanishing external forces, the above expression reduces
to the usual dipole version of the Navier-Stokes equation
[15]. Substitutingfa by va+]az in Eq. (2.31), we get the
original stochastic Navier-Stokes Eqs.(2.1), with pressure
given byP=]tz−n]2z− 1

2vW2. We have provided, thus, starting
from Eq.(2.12), a derivation of Eq.(2.30) [and, equivalently,
Eq. (2.31)], which emphasizes the gauge structure associated
to the dynamics of the fieldfasxW ,td. It is tempting to conjec-
ture that some of the standard gauge field theory techniques,
like the 1/N expansion in non-Abelian extensions, instan-
tons, loop calculus, etc., could find interesting applications in
the turbulence domain, an idea formerly advanced by Migdal
[28].

Does Eq.(2.31) yield any advantage over the standard
Navier-Stokes formulation? Direct numerical simulations
based on Eq.(2.31) would probably have the same compu-
tational cost than the ones which usually rely on the Navier-
Stokes equations, since both versions involve at least two
Fourier transformations per iteration cycle. In practice, the
above description provides an alternative approach to large
eddy simulations[14], or the analysis of phenomenological
aspects of vortex tubedynamics, as put forward in the follow-
ing considerations.

III. STOCHASTIC VORTEX TUBE EVOLUTION

We are now interested in investigating the evolution of a
closed vortex tubeG, with small linear cross-sectional di-
mensions(of the order ofh) and subject to the action of
large-scale Gaussian random forces. In a first approximation,
we regard the tube as a vorticity filament, parametrized by
the curvexa=xass,td, and carrying total vorticity fluxf. The
vorticity field is given by

va = fdsn1ddsn2d
d

ds
xass,td, s3.1d

where, similarly to the former plaquette’s definitions,n1 and
n2 indicate the normal and binormal coordinates along the
line vortex.

The assumptions taken in Eq.(3.1) that the vorticity flux
is time-independent and that cross-section fluctuations may
be neglected are imposed as phenomenological constraints.
Our results will be expected to hold to the extent that phe-
nomena such as vortex breakdown, vortex merging, etc. do
not affect the vortex tube evolution. Such flow regimes have
been well verified in the numerical and real experiments
where vortices are mostly advected by the background flow,
during their mean lifetime, in agreement with the flux con-
servation Kelvin’s theorem. This state of affairs gives in fact
the physical basis that supports the somewhat popular choice
of modeling vortex tubes by means of Burgers vortices, or
similar configurations.

Our first task here is to apply the information provided by
Eq. (3.1) in the effective action(2.30). In the limit of van-

ishing viscosity, we are left, therefore, with the evaluation of
]tfa and vbs]bfa−]afbd. The latter quantity is just minus
the Lamb vector. In fact, usingva=eabg]bfg, a straightfor-
ward computation leads to

vbs]bfa − ]afbd = eabgvbvg. s3.2d

To find ]tfa, let us imagine, as an auxiliary construction, that
the line vortex is advected by a divergence-free fieldjasxW ,td,
defined on all space, and which satisfies the boundary con-
dition jasxW ,td= ẋass,td on G. We have, then[29],

]tvW = ¹W 3 sjW 3 vW d. s3.3d

Observing that ]tva=]tfeabg]bfgg=eabg]b]tfg, we get,
from Eq. (3.3),

]tfa = eabgẋbvg + ]al, s3.4d

wherel is an arbitrary field. We are ready to substitute Eqs.
(3.2) and (3.4) into Eq. (2.30). Introducing

ca
'ss,td ; eabgcbss,td

d

ds
xgss,td, s3.5d

whereca= ẋa−va, we obtain

Sf = Scc + Slc + Sll, s3.6d

with

Scc =
if2

4
E

t0

t1

dtE
0

pstd

dsE
0

pstd

ds8ca
'ss,tdF−1fxWssd

− xWss8dgca
'ss8,td,

Slc =
if

2
E

t0

t1

dtE d3xWE
0

pstd

ds8]alsxW,tdF−1fxW − xWss8dgca
'ss8,td,

Sll =
i

4
E

t0

t1

dtE d3xWE d3xW8]alsxW,tdF−1sxW − xW8d]alsxW8,td,

s3.7d

wherepstd is the length of the vorticity filament. The inte-
gration overl gives

Z = NE Dca
' expsiScd, s3.8d

where

Sc =
if2

4
E

t0

t1

dtE
0

pstd

dsE
0

pstd

ds8ca
'ss,tdPabF−1fxWssd

− xWss8dgca
'ss8,td. s3.9d

Note that whileSc is a functional ofca
', the projection ofca

on dxa /ds (that is, the longitudinal component ofca) maps
the line vortex into itself. The singularities that eventually
appear in the integrand of Eq.(3.9) may be circumvented in
a physical way, replacing the original vortex filament by a
vortex tube, through the substitutions

ca
'ss,td → ca

'ss,tdhsn1,n2d,
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ca
'ss8,td → ca

'ss8,tdhsn18,n28d,

ds→ d3xW, ds8 → d3xW8,

F−1fxWssd − xWss8dg → F−1sxW − xW8d, s3.10d

wherexW =sn1,n2,sd, xW8=sn18 ,n28 ,s8d, and

hsn1,n2d =
1

ph2 expS−
1

h2sn1
2 + n2

2dD . s3.11d

We assume that the “smeared” curvature radius of the
vortex tube is much larger than the Kolmogorov dissipation
length(a hypothesis supported by observations). In practical
computations, this allows us to work with a straight vortex
tube, takings=z, n1=x, andn2=y (one can figure it out as a
circular vortex tube with infinite curvature radius). Below,
we deal with two specific examples of external stochastic
forcing, given by Eqs.(2.3) and (2.5), which will be named
modelsA andB, respectively. A more concise expression for
Sc, compared to Eq.(3.9), follows in general, relying basi-
cally on the slender vortex tube profile.

Analysis of modelA

To evaluateSc, it is necessary to kernel,

PabF −1sxW − xW8d =
1

8pD0m
sdab − ]−2]a]bd

3s]2 − m2d2d3sxW − xW8d. s3.12d

If this expression is substituted into Eq.(3.9), considering
Eqs. (3.10) and (3.11), a number of terms is obtained, hier-
archically organized according to the powers of the dissipa-
tion lengthh→0 defined in their coefficients. We will retain
in the expression forSc only the dominant term, correspond-
ing to the smallest power ofh. Using rotation invariance
around thez axis, this prescription effectively amounts to
performing in Eq.(3.9) the replacement

PabF −1sxW − xW8d → dab

16pD0m
s]'

2 d2d3sxW − xW8d, s3.13d

wheres]'d2;]x
2+]y

2. We obtain

Sc =
if2

16p2D0mh6E
t0

t1

dtE
0

pstd

dsfca
'ss,tdg2. s3.14d

The full expansion in powers ofh can be worked out as well,
being related to the derivative expansion in powers of]s. We
get, in them→0 limit,

Sc =
if2

16p2D0mh6E
t0

t1

dtE
0

pstd

dsfca
's1 + c1h2]s

2

+ c2h4]s
4 + ¯ dca

'g. s3.15d

It is not necessary to write down the explicit values of the
ci’s, insofar as they will not have any relevant role in the
forthcoming arguments. Although Eq.(3.14) is an apparently
elementary quadratic action, the time-dependent spatial inte-

gration limit pstd renders the analytical evaluation ofZ dif-
ficult. Nevertheless, the problem looks amenable of numeri-
cal investigation through the use of Langevin techniques
[30].

Since we are discussing the time evolution of a vortex
tube, the relevant physical question one may ask is con-
cerned with the probability density functional of finding the
tube in a certain geometrical configuration. In a first instance,
this seems to be an intricate problem, once any individual
vortex tube “world line” to be considered in the path integra-
tion is accounted for by a large number of configurations of
ca. A simple solution of this degeneracy problem may be
obtained, however, by means of the “minimal mapping”ca

0,
depicted in Fig. 2. The essential idea is to keep track of the
vortex tube evolution for a very small time intervald. We
decompose the time evolution in two steps. First, the tube
Gstd is mapped intoG* std through its self-induced velocity
field va. Next, the stochastic perturbationca takesG* std to
the final configurationGst+dd. The mapping sequencexa

→xa8 →xa9, with

xa8 = xa + dva,

xa9 = xa8 + dca. s3.16d

Let g be the plane that containsxa8 and is normal toG* std.
Then,ca

0 is just the vector parallel tog that connectsxa8 to
the vortex tubeGst+dd. We have

ca
'ss,td = ca

0
„s+ dcsss,td,t… + Osd2d

= ca
0ss,td + dcs]sca

0ss,td + Osd2d, s3.17d

where cs;cadxa /ds. The expansion(3.17) implies that
ca

'−ca
0 =Osdd, and soca

' may be substituted byca
0 in Eq.

(3.14). We find, thus, that the probability density functional
for the transitionGst0d→Gst1d of the vortex tube configura-
tion may be defined as

FIG. 2. The vortex tubeGstd evolves, during the small time
interval d, to the new configurationGst+dd. The intermediate
dashed tubeG* std corresponds to the transport provided by the
self-induced velocity fieldva.
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ZA = NE Dca
0

3expH−
f2

16p2D0mh6E
t0

t1

dtE
0

pstd

dsfca
0ss,tdg2J .

s3.18d

Clearly, the original field degeneracy is removed, and there is
in Eq. (3.18) a one-to-one correspondence between the vor-
tex tube integration paths and the fieldsca

0ss,td.

Analysis of modelB

The computational steps are exactly the same as the ones
performed in the former case. The only technical difference
is that the analog of Eq.(3.12) is written now in Fourier
space,

P̃abF̃−1skd =
1

2p2D0
sdabk3 − kakbkd. s3.19d

The dominant contribution to Eq.(3.9), of order 1/h5, comes
from the substitution

P̃abF̃−1skd → 1

4p2D0
dabk'

3 . s3.20d

We get, similarly to Eq.(3.18), the probability density func-
tional

ZB = NE Dca
0 expH−

6f2Îp

D0h5 E
t0

t1

dtE
0

pstd

dsfca
0ss,tdg2J .

s3.21d

A remarkable feature of modelB, as it may be easily inferred
from Eq. (3.21), is that there is no dependence of the prob-
ability density functionalZB upon the integral scaleL=1/m
(as it occurs in modelA, for instance).

In order to establish a connection between the above mod-
els and observed features of turbulent flows, a slight modifi-
cation of expressions(3.18) and(3.21) is necessary. In prin-
ciple, the Martin-Siggia-Rose framework implemented by
Eqs. (2.29) and (2.30) is expected to provide a bona fide
statistical modeling of vortex tube motion if an ultraviolet
cutoff appears dynamically at a frequencyuvu,1/th, where
th,h2/3 is the eddy turnover time at the Kolmogorov length
scale. The simplest way to find improved versions of Eqs.
(3.18) and(3.21), thus, is to replace the Diracd factor in Eq.
(2.2) by a regularized expression like

dRst − t8d =
1

2th

exps− th
−1ut − t8ud, s3.22d

and relax the cutoff prescription for the fieldca in frequency
space. As a consequence, if all the steps leading to Eqs.
(3.18) and(3.21) are evaluated again, taking into account the
modifications due to Eq.(3.22), we will get, for both models
A andB, the general result

Z = NE Dca
0 expH− cE

t0

t1

dtE
0

pstd

dsfsth]tca
0d2 + sca

0d2gJ ,

s3.23d

where c=csm,h ,D0d takes, for modelsA and B, the same
values as before.

IV. BACKGROUND VELOCITY FLUCTUATIONS

It is interesting to note that the probability density func-
tional (3.23) is completely equivalent to the one derived for
the problem of random advection of a vortex tube by a back-
ground velocity field. In this way, we can draw a correspon-
dence between the former effective description, based on the
analysis of the stochastic Navier-Stokes equations, and real-
istic properties of turbulent flows. Such a mapping, however,
is not unique: it turns out that there is an infinity of velocity-
velocity correlators that would work. Having this theoretical
limitation in mind, we may try, at best, to compare the form
of the predicted coupling constants appearing in Eq.(3.23),
with the ones found from experimental and numerical stud-
ies. The central problem, then, is to define a Gaussian sto-
chastic forcing which leads, in an accurate way, to known
features of the background flow. At this point we are guided
by numerical observations[9], which indicate the existence
of a short-range correlated background flow.

If vasxW ,td is the velocity of the background flow, which is
assumed to be a random Gaussian fluctuating field with van-
ishing mean value, a particularly appealing correlator is de-
fined as

kvasxW,tdvbsxW8,t8dl = gPabd3sxW − xW8ddRst − t8d. s4.1d

It follows that the one-dimensional background energy spec-
trum is given by

Eskd =
gk2

4p2th

, s4.2d

and that the path-integral expression(3.23) holds, with

c =
ph2

2g
. s4.3d

It is straightforward to prove Eq.(4.2) from the Fourier
transform of the velocity-velocity correlator(4.1). Let us dis-
cuss now, in more detail, how Eq.(3.23) arises from Eq.
(4.1), with the specific parameter definition(4.3).

The probability density functional to have a certain back-
ground velocity fieldv̄asxW ,td in the regionVt enclosed by a
vortex tube, for the time intervalt0ø tø t1, may be written as

P = kPi,jd„v̄asxW i,tjd − vasxW i,tjd…l, s4.4d

where sxW i ,tjd denotes a discretized space-time position de-
fined in the set of world lines generated by the vortex tube
evolution. Using the Fourier representation of thed function,
Eq. (4.4) becomes, in the continuum limit,
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P = NE Dja expSiE
t0

t1

dtE
Vt

d3xWjav̄aD
3KexpS− iE

t0

t1

dtE
Vt

d3xWjavaDL . s4.5d

Resorting to the Gaussian random behavior of the back-
ground velocity field, we are able to compute the above ex-
pectation value. Using Eq.(4.1), we find

P = NE DjaexpSiE
t0

t1

dtE
Vt

d3xWjav̄aD
3expF−

g

2
E

t0

t1

dtE
t0

t1

dt8

3E
Vt

d3xWjasxW,tddRst − t8dPabjbsxW,t8dG . s4.6d

Sincev̄a=Pabv̄b, we may integrate over the fieldja to get

P ~ expH−
1

2g
E

t0

t1

dtE
Vt

d3xWfsth]tv̄ad2 + sv̄ad2gJ .

s4.7d

If the vortex tube has a small circular cross section of area
ph2, we can replaceeVt

d3xW by ph2e0
pstdds in Eq. (4.7). Fur-

thermore, to find the transition probability density functional
Z for the vortex tube evolution between configurationsGst0d
and Gst1d, we (i) decompose the velocity field in transverse
and longitudinal components to the vortex tube tangent vec-
tor, viz., v̄a= v̄a

'+ v̄a
l , (ii ) integrate over the longitudinal com-

ponentsv̄a
l , and (iii ) introduce the “minimal velocity field”

va
0 in close analogy with the previous definition ofca

0. We
obtain

Z = NE Dva
0 expH−

ph2

2g
E

t0

t1

dtE
0

pstd

dsfsth]tva
0d2 + sva

0d2gJ .

s4.8d

Therefore, identifyingva
0 to ca

0, we have just found Eq.
(3.23) again, withc given by Eq.(4.3).

We remark that it is possible to define, without much ad-
ditional effort, an alternative form for the velocity-velocity
correlator which would lead to the expanded formulation
given by Eq.(3.15). We could take, for instance,

kvasxW,tdvbsxW8,t8dl = gPabfsx − x8dfsy − y8dfsz− z8ddRst − t8d,

s4.9d

wherex, y, andz are local coordinates attached to the vortex
tube, and

fsxd , E dk
1

1 + b1h2k2 + b2h4k4 + ¯

expsikxd.

s4.10d

The coefficientsbi may be adjusted in order to recover the
set of ci’s appearing in Eq.(3.15). Of course, Eq.(4.9) is
approximately isotropic in the inertial range wave numbers,

wherek!1/h. In any case, however, Eq.(4.9) should yield
an isotropic correlator, when written in terms of the coordi-
natessx,y,zd of a fixed Cartesian framework, after the aver-
age over all possible vortex tube orientations is taken.

From Eqs.(4.2) and(4.3), we can predict the form of the
one-dimensional energy spectrum for modelsA and B (dis-
regarding numerical prefactors),

EAskd ,
D0mh8

f2th

k2,

EBskd ,
D0h7

f2th

k2. s4.11d

It is useful to compare Kolmogorov’s spectrumEKskd
,D0

2/3k−5/3 with the above expressions. We may estimate,
relying on Kolmogorov phenomenology, thatf,D0

1/3h4/3

and th,D0
−1/3h2/3. At the dissipative wave numberkh

,1/h, we define the Reynolds-number-dependent dimen-
sionless ratio

Q ;
Eskhd
EKskhd

, Re
a, s4.12d

whereEskhd is the background spectrum for a given model.
It turns that for modelA, we geta=−1 while for modelB,
a=0. More generally, it is not difficult to realize that the
family of Gaussian stochastic forces described by

F̃skd , sk2 + m2d−b, s4.13d

with bù
3
2 leads to Eq.(4.12) with a=3−2b.

A numerical wavelet analysis by Fargeet al. [9] of the
direct numerical simulations carried out by Vincent and Me-
neguzzi[8] at moderately high Reynolds numbers reveals the
existence of a backgroundk2 one-dimensional energy spec-
trum. The turbulent flow may be depicted as a vortex tube
gas surrounded by incoherent fluctuations, the latter having
their kinetic energy equiprobably distributed over the spatial
Fourier modes. It has been suggested in Ref.[9] that the
dissipation at the bottom of the inertial range would be pre-
ceded at larger scales by some coherent-to-incoherent energy
transfer from the vortex tubes to the background field. A
fraction of the vortex tubes would be disrupted in a conser-
vative way, so that the transformation of their mechanical
energy into heat would occur afterwards in the background
flow. One may conjecture that the integral length scale is
irrelevant in this sequence of small-scale events. In that case,
we havea=0, as in modelB, which is actually the scenario
indicated by the numerical results, whereQ.0.1 for the
Taylor-scale Reynolds numberRl=150 (equivalent toRe
.103, according to Ref.[8] and also using the phenomeno-
logical expressions of Lohse[31]).

V. CONCLUSION

We investigated in this work both formal and phenomeno-
logical aspects of homogeneous isotropic turbulence, within
the stochastic modeling of vorticity dynamics. A rigorous
statistical lattice vortex description of turbulent flows was
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established, yielding the basis for a subsequent phenomeno-
logical discussion of the problem of the random evolution of
vortex tubes, commonly observed in experiments and nu-
merical simulations. Since the advection of vorticity coher-
ent structures is ultimately caused by the background flow,
according to Kelvin’s theorem, we interpret the stochastic
method as an effective tool for computing the evolution of
vortex tubes. We were able to find in this way a plausible
form for the background velocity-velocity correlator, and, as
an immediate consequence, the background one-dimensional
energy spectrum. We found a satisfactory agreement with the
recent numerical analysis of Fargeet al. [9], where a
thermal-like spectrum was clearly noticed for the back-
ground flow. In particular, we observed that the Gaussian
correlator(2.5), used in the renormalization-group approach
to turbulence[19–22]—which has led to perhaps the best
theoretical computation of the Kolmogorov spectrum per-
formed so far—is likely the correct choice(modelB of Sec.
IV ) for the derivation of phenomenologically meaningful re-
sults. It would be important to improve the connection be-
tween the stochastic modeling and the numerical results,
concerning anisotropic effects, as the reported zero helicity
distribution peak for the incoherent fluctuations[9].

There is strong numerical evidence that the vortex tube
gas accounts on its own for Kolmogorov’s spectrum
[9,16,32,33]. Regarding the background flow, our analysis
suggests that it has a twofold character, involving the com-
bination of the “eddy noise”[24] forcing, effectively mod-
eled by Eq.(2.5), and of configurations which satisfy the
energy equipartion principle. The picture that emerges—to
be explored in further analytical and numerical works—is
that these two facets of the background fluctuations are self-
consistently related to the vorticity coherent structures.
While the force-force correlator(4.13) with b.3/2 is a rea-
sonable choice for a rigorous study of the turbulence prob-
lem, it becomes useless when considered in the simplified
phenomenological perspective addressed in Sec. IV. On the
other hand, modelB is favored by the force of numerical
observations, since it copes well with the tripartite phenom-
enological stage set up by the vortex tube gas, stochastic
eddy noise, and the thermal-like background flow.
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